الوحدة 02: العمل والطاقة الحركية (حركة انسحابية).

المجال: الميكانيك والطاقة

المستوى: السنة ثانية ثانوى تقنى رياضي + رياضيات.

المجال: الميكانيك والطاقة.

الوحدة: العمل والطاقة الحركية (حركة انسحابية).

مؤشرات الكفاءة:

- 🖘 يعبر ويحسب عمل قوّة ثابتة والطاقة الحركية
- 🖘 يستعمل مبدأ انحفاظ الطاقة لتحديد سرعة جسم

- لجسم صلب في حركة انسحابية.
- صلب في حركة مستقيمة.

مراحل سير الوحدة:

1- عمل قوّة ثابتة (حركة انسحابية).

- 1.1- مفهوم القوّة.
- 2.1- العمل المحرك والعمل المقاوم.
 - 3.1- عمل قوّة الثقل.

2- العمل والطاقة الحركية.

- 1.2- المقادير التي تتعلق بها الطاقة الحركية.
 - 2.2- عبارة الطاقة الحركية (دراسة كمية).

النشاطات المقترحة:

🖘 تأثير قوّة على سرعة جسم في حركة انسحابية مستقىمة.

الأستاذ: طواهرية عبد العزيز

المدة اللجمالية: 4 سا.

- ☞تأثير القوّة واتجاهها.
- ☞ دراسة تغيّر سرعة متحرك، خاضع لقوّة ثابتة بدلالة عمل هذه القوّة وكتلة المتحرك بغرض الوصول أو التحقق منها. $E_c = \frac{1}{2}mv^2$ للعلاقة

الوسائل المستعملة:

- 🤣 جهاز الكمبيوتر المحمول.
 - 🔑 جهاز العرض.
 - 🔑 مختلف تجهيزات المخبر.

المراجع:

- 🖑 الكتاب المدرسي.
- 🔑 الوثيقة المرافقة.
 - 🖔 المنهاج.
- 🥠 وثائق من شبكة الأنترنت.

التقويم:

- مجموعة تطبيقات تحقق الكفاءات المستهدفة.

ملاحظات:

الأستاذ: طواهرية عبد العزيز.

نوع النشاط: نظري.

المدة: 1سا + 1سا.

<u>المدة اللجمالية:</u> 4 سا.

البطاقة التربوية رقم 01: عمل قوّة ثابتة (حركة انسحابية).

<mark>المستوى:</mark> السنة ثانية ثانوي تقنى رياضي + رياضيات.

المجال: الميكانيك والطاقة.

الوحدة: العمل والطاقة الحركية (حركة انسحابية).

الموضوع: عمل قوّة ثابتة (حركة انسحابية).

مؤشرات الكفاءة:

- 🤏 پدرك مفهوم القوّة.
- 🖘 يدرك مفهوم العمل المحرك والعمل والمقاوم.
- 🖘 يطبق قانون عمل قوّة ثابتة في حالة حركة مستقيمة منتظمة.
 - 🖘 يمثل عمل قوّة الثقل.
 - 🖘 يستنتج عبارة عمل الثقل لجسم ينزل وفق مستو مائل.
 - 🖘 يدرك أن عمل الثقل لا يتعلق بالمسار المتبع.

النشاطات المقترحة:

- ☞ تأثير قوّة على سرعة جسم في حركة انسحابية مستقيمة.
 - ☞تأثير القوّة واتجاهها.

الوسائل المستعملة:

- 🤣 جهاز الكمبيوتر المحمول.
 - 🦑 جهاز العرض.

المراجع:

- 🦑 الكتاب المدرسي.
- 🍑 الوثيقة المرافقة.
 - 🔑 المنهاج.
- 🤣 وثائق من شبكة الأنترنت.

مراحل سير الدرس:

- 1- عمل قوّة ثابتة (حركة انسحابية).
 - 1.1- مفهوم القوّة.
- 2.1- العمل المحرك والعمل المقاوم.
 - 3.1- عمل قوّة الثقل.

التقويم:

- أسئلة خلال الأنشطة تحقق الكفاءات
 - المستهدفة.

ملاحظات:

1- عمل قوّة ثابتة (حركة انسحابية):

1.1- مفهوم عمل قوّة:

النشاط 01:

نطبّق قوّة الهواء المنبعث من مجفف الشعر على عربة بحيث تكون ثابتة تقريبا. (الشكل -01-)

1- ما هي أحسن جهة لتأثير هذه القوّة على العربة بحيث تنتقل من النقطة A إلى النقطة B بأقصى سرعة \P أحسن جهة لتأثير هذه القوّة على العربة بحيث تنتقل من النقطة P إلى النقطة P بأقصى سرعة اذا كان حاملها مواز او من منطبق على المسار P وجهتها مع جهة الحركة.

المجال: الميكانيك والطاقة

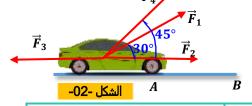
2- في رأيك كيف يكون تأثير القوّة إذا كان حاملها عموديا على السكتين؟

🖘 لا وجود لتأثير القوّة اذا كان حاملها عموديا على السكتين (تبقى ساكنة).

النشاط 02:


يمثل **الشكل -02-** سيارة خاضعة لأربع قوى: \vec{F}_1 ، \vec{F}_2 ، \vec{F}_3 ، \vec{F}_4 و \vec{F}_3 ، \vec{F}_4 يؤثر بها أربعة أشخاص على هذه السيارة انطلاقا من النقطة A إلى النقطة عند الشرة المؤلى المؤلى

1- من بين القوى ما هي القوّة التي تجعل السيارة تصل إلى النقطة B بأقصى سرعة عندما تؤثر لوحدها على السيارة؟


القوّة F_2 لوحدها تجعل السيارة تصل إلى النقطة B بأقصى سرعة من بين جميع القوى ثم القوّة $oldsymbol{\mathbb{F}}_2$

وتليها القوّة ${\it F}_4$ وأخيرا القوّة ${\it F}_3$ التي تعمل على ارجاع السيارة الى الوراء.

9- من اجابتك على السؤال السابق بم يتعلق عمل القوة F المحركة للسيارة?

3- أكمل الجدول التالي:

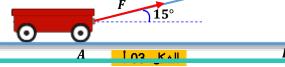
$W_{AB}(\overrightarrow{F}) = f.d.\sin(\alpha)$	$W_{AB}(\vec{F}) = f.d.\cos(\alpha)$	$W_{AB}(\overrightarrow{F}) = f.d$	القوّة العبارة
750	1299,03	1500	F_1 القوّة
0	1500	1500	${\it F}_2$ القوّة
0	-1500	1500	$oldsymbol{F}_3$ القوّة
1060,66	1060,66	1500	F_4 القوّة

4- ماهي العبارة التي تحقق الترتيب السابق للقوى (سؤال 1)؟

 $W_{AB}(ec F)=f.\,d.\,cos(lpha)$ العلاقة: العلاقة:

نتيجة: عمل قوّة ثابتة \overrightarrow{F} عندما تنتقل نقطة تطبيقها وفق مسار AB يعطى بالعبارة التالية:

$$W_{AB}(\vec{F}) = \vec{F} \cdot \vec{AB} = F \cdot d \cdot \cos \alpha$$


 \overrightarrow{AB} و \overrightarrow{F} مي الزاوية بين A و B مي النقطة A إلى النقطة A و A

2.1- العمل المحرك والعمل المقاوم:

النشاط 03:

AB = 10m: من A إلى A حيث: $A = 10^2 N$ (الشكل $AB = 10^2 N$) نجر عربة بقوة ثابتة

مل القوّة F مساعدة أم معيقة للحركة؟ -1.1

الوحدة: العمل والطاقة الحركية.

В

الشكل -03-ب-

الشكل -04-

- F أحسب عمل القوّة
- BC=50m بعد قطع مسافة فرملة قوّتها F'=200N بعد قطع مسافة -2
 - جمل القوّة F' مساعدة أم معيقة للحركة؟ -1.2
 - .F' أحسب عمل القوّة -2.2
 - 3- ماذا تستنتج؟

حل النشاط 03:

- F القوّة F قوّة مساعدة لأنها في جهة الحركة.
- $W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F \cdot d \cdot \cos \alpha = (10^2)(10) \cdot \cos(15) = 759,68j 2.1$
 - .1.2 القوّة F' قوّة معيقة لأنها عكس جهة الحركة.

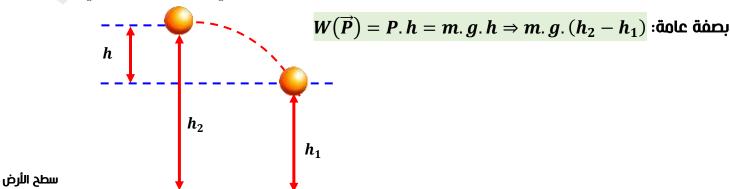

$$W_{AB}(\vec{F}') = \vec{F}' \cdot \vec{BC} = F \cdot d' \cdot \cos \alpha = (200)(50) \cdot \cos(180) = -10^4 j - 2.2$$

 $W_{AB}(ec F) < 0$ الاستنتاج: نقول عن عمل قوة F أنه محرك إذا كان $W_{AB}(ec F) > 0$ وأنه مقاوم إذا كان

3.1- عمل قوّة الثقل:

نشاط 04:

نضع عربة فوق مستوى مائل خشن الشكل -04- ثم ندرس حركة هذه العرىة.



- . سبب انتقال العربة من النقطة $ec{P}$ للعربة. $ec{P}$ للعربة من النقطة عند النقطة $ec{P}$ العربة.
 - 2- مثِّل القوى المؤثرة على العربة.
 - 🖘 قوّة الثقل 🌈 الشاقولية والموجهة نحو مركز الأرض.
 - ® رد فعل الطاولة على العربة **R** عمودية على مسار الحركة.
 - © قوّة الاحتكاك **f** معاكسة لحمة الحركة.
 - lpha بدلالة الانتقال AB وزاوية الميل h
 - $.\sin\alpha = \frac{h}{r} \Rightarrow h = L.\sin\alpha...(1)$
 - 4- أوجد عبارة عمل الثقل خلال الانتقال AB؟ ماذا تستنتج؟
- $cos\left(rac{\pi}{2}-lpha
 ight)=sin(lpha)$ ، ولدينا: $W(ec{P})=P.L.cos\left(rac{\pi}{2}-lpha
 ight)$ عبارة عمل الثقل:

 $W(\vec{P})=P.\,h$: ومنه $W(\vec{P})=P.\,L.\,sin(lpha)$ ومن العلاقة

$$\Rightarrow W(\overrightarrow{P}) = m.g.h$$

الاستنتاج؛ عمل ثقل جسم لا يتعلق بالمسار المسلوك بل بشدّة الثقل والفرق في اللرتفاع بين نقطتي الانتقال.

البطاقة التربوية رقم <u>02:</u> العمل والطاقة الحركية..

<u>المستوى:</u> السنة ثانية ثانوي تقني رياضي + رياضيات.

المجال: الميكانيك والطاقة.

الوحدة: العمل والطاقة الحركية (حركة انسحابية).

الموضوع: العمل والطاقة الحركية.

مؤشرات الكفاءة:

. يتوصل الى العلاقة $E_c=rac{1}{2}mv^2$ أو التحقق منها.

النشاطات المقترحة:

دراسة تغيّر سرعة متحرك، خاضع لقوّة ثابتة بدلالة عمل هذه القوّة وكتلة المتحرك بغرض الوصول للعلاقة $E_c=rac{1}{2}mv^2$

الوسائل المستعملة:

- 🤣 جهاز الكمبيوتر المحمول.
 - 🤣 جهاز العرض.
- 🤣 عربة صغيرة، خيط مطاطى، مسطرة 1متر،

<u>المراجع:</u>

- 🖑 الكتاب المدرسي.
- 🔑 الوثيقة المرافقة.
 - 🦊 المنهاج.
- 🤣 وثائق من شبكة الأنترنت.

الأستاذ: طواهرية عبد العزيز.

نوع النشاط: عملي.

المدة: 2سا.

<u>المدة اللجمالية:</u> 4 سا.

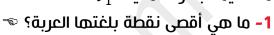
<u> مراحل سير الدرس:</u>

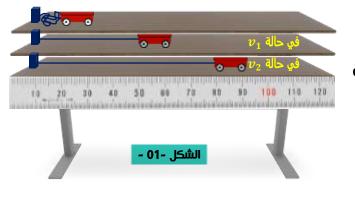
2- العمل والطاقة الحركية.

- 1.2- المقادير التي تتعلق بها الطاقة الحركية.
 - 2.2- عبارة الطاقة الحركية (دراسة كمية).

<u>التقويم:</u>

- أسئلة حول الأنشطة تحقق الكفاءات
 - المستهدفة.
 - ملاحظات:




- بطاقة التلميذ -

1.2- المقادير التي تتعلق بها الطاقة الحركية:

النشاط 01:

مربوطة على مستوي أفقي أملس (طاولة مثلا) مربوطة - L خع عربة على مستوي أفقي أملس (طاولة مثلا). لحاجز مثبت بواسطة خيط مطاطي مسترخ (شكل -01). ادفعها (بواسطة مسطرة مثلا) بحيث تنطلق في حركة مستقيمة بسرعة معيّنة v_1 .

• • • • • • • • • •	2- هل المطاط يحزن طافة؟ ما هو شكلها؟ ومن اين اكتسبها؟☞
• • • • • • • • • • • • • • • • • • • •	
	$(v_2>v_1)$ أعد التجربة بدفع العربة من نفس الموضع السابق بحيث تنطلق بسرعة v_2 أكبر. أحد العربة من نفس الموضع السابق بحيث تنطلق بسرعة v_2
• • • • • • • • • • • •	1– ما هي أقصى نقطة بلغتها العربة في هذه الحالة؟ ماذا تلاحظ؟ ۞
• • • • • • • • • •	

<u>النشاط 02:</u>

2- ماذا تستنتج؟ 🖘

نحقق التركيب التجريبي (الشكل -**02-**) بحيث نستعمل عربتين من نفس النوع احداهما فارغة (عربة A) والأخرى بحمولة (العربة B).

= .5 · · 5 · .	$(m_2 > m_1)$
1- هل العربتان تخزنان طاقة؟ ما هو شكلها؟ *	(m₁)
	h
2- أي العربتين تحدث أثرا أكبر بالجدار؟	(m_2)
●	
	h

تستنتد؟	ln	-3
ىسىسى	w	-3

-02- الشكل

التالية:	الفقرة	أكمل	-4
	_	_	

وتتعلق	(E_C) فان يملك طاقة نسميها طاقة فان يملك طاقة نسميها طاقة (E_C)	ــر فيم	ذا تحرك جس
	الجسم المتحرك، وكلما زادت أو زادت طاقته	9	·····
			لحركية.

2.2- عبارة الطاقة الحركية (دراسة كمية):

النشاط 03:

نصور باستعمال كاميرا رقمية حركة سقوط كرية كتلتها m=1Kg من ارتفاع معيّن من سطح الأرض ثم نعالج الفيديو المسجل بواسطة برنامج المعالجة AviStep للحصول على المواضع المتتالية لحركة الكريّة خلال مجالات الفيديو المسجل بواسطة برنامج المعالجة $\sigma=10N$. (يعطى: $\sigma=10N$) ريعطى: $\sigma=10N$ 0. (يعطى: $\sigma=10N$ 0.)

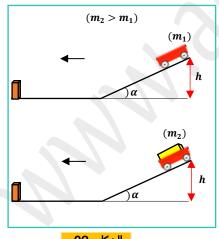
M_1 :	الموضع	M_2	M_3	M_4	M_5	M_6	M_7	M_8
M_2 .	h'(cm)	1112	1413	1114	1715	1716	117	1118
	h (m)							
M_3 .	<i>W</i> (<i>j</i>)							
	المجالات المعتبرة							
M_4	v(m/s)							
M4 •	v^2							
į	$m. v^2$				· ·			
	W/m . v^2							
M_5 •	X المتوسط الحسابي							
				في الحقي $\it I$	يعط M ₀ و يعط	ن الموضع	المسافة بيا: المس	:h(m
M ₆ .			.قق $v_i = \frac{M_i}{2}$	∫ في الحقي ى: ₂₇	M_i و M_0 و M_0 يعط $w(ec{P})$	ن الموضع $f(x) = f(x)$:h(m أرسم اا
M_6 .	$\cdot M_i$		$.$ قق. $v_i = rac{M_i}{M_i}$ ى $w(I)$ خومو لھك	ا في الحقيا ى: ^{1 <u>M</u>i+1} ى الثقل (P̄) نظة سقود	M_i و M_0 و M_0 عط $w(ec{P})$ بعمار mv ية بين لد	ن الموضع $ \hat{f} = f(n) $ ني تربط $ \hat{f} = \hat{f} $ قوية للكر	المسافة بي v^2 بيان (v^2 العلاقة الن	h(m: أرسم اا استنتج مثّل الد
M_6 .	M_i		$.\ddot{a}\ddot{a}$ $.v_i = \frac{M_i}{.w(1)}$	ا في الحقيا ى: ^{1 <u>M</u>i+1} ى الثقل (P̄) نظة سقود	M_i و M_0 و M_0 عط $w(ec{P})$ بعمار mv ية بين لد	ن الموضع $ \hat{f} = f(n) $ ني تربط $ \hat{f} = \hat{f} $ قوية للكر	المسافة بي v^2 بيان (v^2 العلاقة الن	h(m: أرسم اا استنتج مثّل الد
	, W(B)(2)		$.$ قق. $v_i = rac{M_i}{M_i}$ ى $w(I)$ خومو لھك	ا في الحقيا ى: ^{1 <u>M</u>i+1} ى الثقل (P̄) نظة سقود	M_i و M_0 و M_0 عط $w(ec{P})$ بعمار mv ية بين لد	ن الموضع $ \hat{f} = f(n) $ ني تربط $ \hat{f} = \hat{f} $ قوية للكر	المسافة بي v^2 بيان (v^2 العلاقة الن	h(m: أرسم اا استنتج مثّل الد
	24 $W(\overrightarrow{P})(j)$		$.$ قق. $v_i = rac{M_i}{M_i}$ ى $w(I)$ خومو لھك	ا في الحقيا ى: ^{1 <u>M</u>i+1} ى الثقل (P̄) نظة سقود	M_i و M_0 و M_0 عط $w(ec{P})$ بعمار mv ية بين لد	ن الموضع $ \hat{f} = f(n) $ ني تربط $ \hat{f} = \hat{f} $ قوية للكر	المسافة بي v^2 بيان (v^2 العلاقة الن	h(m: أرسم اا استنتج مثّل الد
	24 W(P)(j) 20 16 12		$.$ قق. $v_i = rac{M_i}{M_i}$ ى $w(I)$ خومو لھك	ا في الحقيا ى: ^{1 <u>M</u>i+1} ى الثقل (P̄) نظة سقود	M_i و M_0 و M_0 عط $w(ec{P})$ بعمار mv ية بين لد	ن الموضع $ \hat{f} = f(n) $ ني تربط $ \hat{f} = \hat{f} $ قوية للكر	المسافة بي v^2 بيان (v^2 العلاقة الن	h(m: أرسم اا استنتج مثّل الد
	24 W(P)(j) 20 16		$.$ قق. $v_i = rac{M_i}{M_i}$ ى $w(I)$ خومو لھك	ا في الحقيا ى: ^{1 <u>M</u>i+1} ى الثقل (P̄) نظة سقود	M_i و M_0 و M_0 عط $w(ec{P})$ بعمار mv ية بين لد	ن الموضع $ \hat{f} = f(n) $ ني تربط $ \hat{f} = \hat{f} $ قوية للكر	المسافة بي v^2 بيان (v^2 العلاقة الن	h(m: أرسم اا استنتج مثّل الد

الشكل -01 -

- يطاقة الأستاذ -

1.2- المقادير التي تتعلق بها الطاقة الحركية:

النشاط 01:


- آ ضع عربة على مستوى أفقى أملس (طاولة مثلا) مربوطة لحاجز مثبت بواسطة خيط مطاطى مسترخ (شكل -01-). ادفعها (بواسطة مسطرة مثلا) بحيث تنطلق في حركة v_1 قىيدە قىسى قىيقتسە
 - 1- ما هي أقصى نقطة بلغتها العربة؟
 - أقصى نقطة بلغتها العربة تبعد عن الحاجة بـ 60cm.
- 2- هل المطاط يخزن طاقة؟ ما هو شكلها؟ ومن أين اكتسبها؟
 - .മല് 🖘
- ☞شكلها طاقة كامنة مرونية اكتسبها من تمدده بفعل حركة العربة.
- $(v_2>v_1)$ أعد التجربة بدفع العربة من نفس الموضع السابق بحيث تنطلق بسرعة أكبر $v_1>v_1$
 - 1- ما هي أقصى نقطة بلغتها العربة في هذه الحالة؟ ماذا تلاحظ؟
- $.v_{1}$ نلاحظ المسافة التي قطعتها العربة في حالة السرعة v_{2} أكبر من المسافة التي قطعتها في حالة السرعة \cdot
 - **2-** ماذا تستنتج؟
 - (v) الطاقة الحركية لحسم تتعلق بسرعته $^{\circ}$

النشاط 02:

نحقق التركيب التجريبي (الشكل -**02-**) بحيث نستعمل عربتين من نفس النوع احداهما فارغة (عربة A) والأخرى ىحمولة (العربة B).

- 1- هل الجملة (عربة + أرض) تخزن طاقة؟ ما هو شكلها؟
 - . ഉല് 🖘
 - E_{nn} طاقة كامنة ثقلية ${\mathfrak P}$
 - 2- أي العربتين تحدث أثرا أكبر بالجدار؟
 - . العربة B (الأثقل) تحدث أثرا أكبر $exttt{$^{\circ}$}$
 - **3-** ما تستنتج؟
 - (m) الطاقة الحركية لجسم تتعلق بكتلته $^{\circ}$
 - 4- أكمل الفقرة التالية:

إذا تحرك جسم في مرجع معيّن فان يملك طاقة نسميها طاقة حركية ونرمز لها بالرمز (E_c) وتتعلق بـكتلة وسرعة الجسم المتحرك، وكلما زادت كتلته أو سرعته زادت طاقته الحركية.

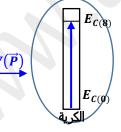
الشكل -02-

2.2- عبارة الطاقة الحركية (دراسة كمية):

النشاط 03:

نصور باستعمال کامیرا رقمیة حرکة سقوط کریة کتلتها m=1Kg من ارتفاع معیّن من سطح الأرض ثم نعالج الفيديو المسجل بواسطة برنامج المعالجة AviStep للحصول على المواضع المتتالية لحركة الكريّة خلال مجالات (1Cm o 0.1m:رَمنية متساوية au = 0.08s (يعطى: au = 0.08s). (يعطى: au = 0.08s سلّم الرسم:

1- أكمل الحدول التالي:


	ت ما الما الما الما الما الما الما الما						
الموضع	M_2	M_3	M_4	M ₅	M ₆	M_7	<i>M</i> ₈
h'(cm)	1,2	2,8	5,2	7,8	11,6	15,4	20,2
h(m)	0,12	0,28	0,52	0,78	1,16	1,54	2,06
W(j)	1,2	2,8	5,2	7,8	11,6	15,4	20,6
المجالات المعتبرة	M_1M_3	M_2M_4	M_3M_5	M_4M_6	M_5M_7	M_6M_8	M_7M_9
v(m/s)	1,6	2,5	3,1	4	4,75	5,6	1
v^2	2,56	6,25	9,61	16	22,6	31,36	1
$m. v^2$	2,56	5,76	9,61	16	22,6	31,36	1
$W/m.v^2$	0,46	0,45	0,56	0,48	0,51	0,49	1
X المتوسط الحسابي	X المتوسط الحسابي $X = (0.46 + 0.45 + 0.56 + 0.48 + 0.51 + 0.49)/6 \approx 0.5$						

. حيث: h'(cm): المسافة بين الموضع M_0 و على الوثيقة

 $v_i = rac{M_{i-1}M_{i+1}}{2\pi}$: المسافة بين الموضع M_0 و M_0 في الحقيقة. يعطى: h(m) و

- $w(\vec{P}) = f(mv^2)$ أرسم البيان
- $w(ec{P})$ استنتج العلاقة التي تربط mv^2 بعمل الثقل mv^2

معامل توجيه y=ax البيان عبارة على مستقيم يمر من المبدأ (دالة خطية) من الشكل y=axهذا المستقيم ومنه:

 $w(\vec{P}) = amv^2 \Rightarrow a = \frac{w(\vec{P})}{mv^2} = \frac{1}{2}$

 $w(\vec{P}) = \frac{1}{2}mv^2 \dots (1) :$ lċl:

 M_i مثل الحصيلة الطاقوية للكرية بين لحظة سقوطها وموضع كيفي M_i

5- استنتج عبارة الطاقة الحركية باستعمال مبدأ انحفاظ الطاقة.

 $E_{C(f)} = E_{C(i)} + W(P)$

الطاقة الابتدائية للكرية $E_{\mathcal{C}(i)}$ في الموضع -معدومة لأن الكرية انطلقت بدون سرعة $M_{
m 0}$ ابتدائية $(v_0=0)$. ومنه تصبح معادلة انحفاظ

 $E_{C(f)} = W(\vec{P})$:الطاقة

بتعويض العلاقة (1) نجد انّ:

$$E_C = \frac{1}{2}mv^2$$

- الحصيلة الطاقوية -

 M_0 M_1 :

 M_2 .

 M_4

 M_5 •

 M_6 .